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Abstract. This paper outlines the way in which the constructive method obtained for sym- 
metrizing nth Kronecker powers of induced representations may be applied to space group 
representations. Also a step by step procedure is given for finding the symmetrized cubes 
of space group representations, with zinc-blende as an example, which may be used indepen- 
dently of the general theory. 

1. Introduction 

In a previous paper (Gard 1973, to be referred to as I), a constructive method was given 
for the reduction of the nth Kronecker power of an induced representation into its 
symmetry classes with respect to the symmetric group S,. Here, we apply the theory 
directly to space group representations. This method should be compared with that 
of Lewis (1973) who has solved the particular problem of obtaining the totally symmetric 
and antisymmetric nth powers of a space group representation, that is the ones corre- 
sponding to the identity and alternating representations of S,, , respectively, by adapting 
a full group method. The subgroup technique has already been used by Bradley and 
Davies (1970) to work out the symmetrized squares of space group representations and 
so we may concentrate on giving a step by step procedure for obtaining the symmetrized 
cubes. This will also serve as a working example for those who may wish to apply 
the general results of I to find the symmetrized representations of a group corresponding 
to all the other representations of S, . 

In # 2 we make some remarks of a general nature about the application of the results 
of I to space group representations, and in $ 3 we restrict attention to the case n = 3 
and give a procedure for finding the symmetrized cubes. This is given in detail for those 
who may not wish to read I beyond $ 1. An example is given in $4. We conclude by 
comparing our method for finding totally symmetrized powers with that of Lewis (1973). 

2. Space group representations 

From the theory of little groups, we know that a complete set of irreducible repre- 
sentations of the space group G is given by (0; t G}, where k is any vector in the repre- 
sentation domain of the first BZ (Brillouin zone) and p is a label for the particular small 
representation DE of the little group K = G". The representation domain (3 is defined 
by Bradley and Cracknell(l972) to be the minimal connected subspace of the BZ such 
that Z R E F  RQ is the whole BZ, where F is the point group corresponding to the space 
group G. More details about space group representations may be found in the review 
article by Koster (1957) and the book by Bradley and Cracknell (1972). 
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1830 P Gurd 

Suppose we wish to  find the symmetrized nth power of (0; t G). For convenience 
we shall suppress the index p .  First we work out a complete set of double coset repre- 
sentatives as defined by equation (1.8) of I which are in the standard form described 
immediately after theorem (2.3) of I. Consider a particular n-tuple (IX) with duo = {EIO}, 
d,, = {RiIwi} E G, where Ri E F and wi is either a nonprimitive translation or the zero 
vector (i = 1,. . . , n- 1). The carrier space of the representation 

( D t n - , ~ ~ L - , o  . . .  mDk)LKn- l ,  

where D:(da1da-') = Dk(I) for all 1 E Gk, carries a direct sum of a fixed representation 
of the discrete translation group T3 associated with the vector 

q = R , - l k + R n - 2 k +  . . . + R , k + k .  

Now K n - ,  c GQ, so in order to obtain a decomposition in terms of irreducibles, we 
may induce the representation of G by stages through G p .  This is possible in all cases 
since, using the notation of I, 

P(n)A(u, 'lu,)P(n)- = A(l) (2.1) 

for all 1 E K,- and hence the group M, defined in theorem (3.7) of I, is also contained 
in 6'4. This result considerably simplifies the problem of decomposing the symmetrized 
powers into irreducibles. 

By a consideration of the induction procedure, it follows that if G is symmorphic 
we need only induce the representation of the factor group = M/T, up to E'' to 
obtain a representation containing small representations of the little group. The 
procedure for inducing is given by Bradley (1966). If the space group is asymmorphic, 
then it can be shown that inducing a representation of M up to G4 is equivalent to 
inducing a projective representation of up to  c4, and for each element { R J v }  E GQ, 
multiplying the result by exp( -ik . v) .  A complete set of tables of projective repre- 
sentations of three-dimensional point groups is given by Hurley (1966) and a formula 
for inducing projective representations is given by Backhouse and Bradley (1970). If 
the vector q is not equivalent to a vector in the representation domain, then the space 
group representation will not be given in standard form. We must apply an automor- 
phism, as in the proof of theorem (3.1) of I, so that the transform of q is in the repre- 
sentation domain. This will be illustrated in the example given in 0 4. 

3. Prescription for symmetrized cubes 

We now give a prescription for obtaining symmetrized cubes of space group repre- 
sentations. This may be read independently of paper I although a knowledge of the 
introduction may be found useful. 

Let G be a space group and let K = Ck be a little group with small representation 
Dt. We give a procedure for decomposing (DE t C) @ (0: t G) 0 (0; f C) into its 
symmetrized powers. As before we shall suppress the index p .  

(i) Work out a complete set A ,  = {dal} of double coset representatives 

G = Kd,,K. 
U1 
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It is necessary to take one double coset representative to be {EIO}. More details about 
double coset representatives may be found in Bradley (1966). 

(ii) For each d,, E A , ,  form the subgroup K, (a , )  = K n d,,Kdu-ll and work out a 
new set A2(a,)  = {du2}  of double coset representatives such that 

G = U K,(a,)d,,K 
a2 

which includes the previous set A , .  
In this way we obtain a complete set of standard triplets (a)  = (d,,, d,, , duo) for the 

Mackey decomposition given by equation (1.12) of I, where duo = {EIO}, d,, E A ,  and 

(iii) Form the triplets into orbits under the action of the symmetric group S3 by 
applying permutations to the positions of the elements in the triplet. Write the new 
triplets obtained in the usual form so that d a m c l ) ,  duff(o,) becomes (du;~o,dnm(,,, 
d,;:o$a,(l), {EIO}).  Reduce this to a standard triplet (b)  by finding elements p o ,  k ,  E K 
such that pod,~~o,du,c,,k, = d,, E A ,  and elements k ,  E K, p ,  E K n d,,Kd;,' such that 
p l p o d ~ f f ~ o , d u , c 2 ~ k l  = d,, E A2(b1). This is in accordance with the definition of the equiva- 
lence relation - given by equation (2.1) of I. Then ({EIO}, {EIO}, {EIO}) will form an 
orbit on its own. For a triplet with two entries the same, it follows from theorem (3.5) 
of I that the orbit will have order three. Finally, if the three entries in the triplet are 
distinct, the orbit may have order 1 ,  2, 3 or 6. 

(iv) Suppose d,, = {Rl lwl) ,  d,, = {R21w2),  where R , ,  R ,  E F and w,, w 2  are either 
nonprimitive translations or the zero vector. With each standard triplet (a) we associate 
the vector q = k +  R , k +  R,k in the BZ. All vectors associated with triplets of a given 
orbit belong to the same star and so, wherever possible, we choose the representative 
(a)  of the orbit so that the corresponding vector q is equivalent to one in the representation 
domain. 

Having completed the analysis of the double coset representatives as described 
above, the next step is to apply the theory of I to one representative (a) from each orbit 
to work out the symmetrized representations. We denote the three symmetry classes 
by Rr3],  R['.'] and where [3], [I3] are the identity and alternating representations 
of S, , respectively. They carry representations rf3], r[',ll and r[13] respectively. Note, 
we have defined Rr2.11 so that the whole space R = RI3] 0 R[zsll 0 R[l31. 

(v) If d,, = d,, = d,, = {ElOj-, then S,(a) = E,(a) = S3 and so, by equation (6.28) of I, 

4, E A,(a,)* 

contains (Dk)[3' t G, 
rL2,11 contains 2(Dk)[2911 7 C, 

r[13] contains (D'')[l3] T C, 
where (Dk)[31 means the totally symmetrized cube of Dk, etc. The characters of powers 
of a representation are to be found in Lyubarskii (1960). 

(vi) If daP = dns # d U t ,  where r ,  s, t E {0,1,2} ,  r # s # t ,  then &(a) = E3(a) E S2 
and so 

P3]  contains { [(D:,)['] 0 

r[2,11 contains 2[(Dtr 0 D!r 0 DEt) 1 K21 T G, 

r[13] contains {[(D:r)['21 0 03 J. K , }  t G, 

1 K , }  t G. 

where K ,  = K n d,,Kd,;' n d,,Kd@;l. 
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(vii) If all the double coset representatives are distinct, apply the theory given in 

(a )  If the orbit has order 6, then &(a) = E3(a) = { 1) and 
8 5 o f I :  

F3] contains [(D:, 0 Dt1 0 Dk) 1 K21 7 G, 

r[',ll contains 4[(D:, 0 D:, 0 Dk) 1 K,]  T G, 

contains [@a2 0 D:l 0 Dk) 1 K 2 ]  7 G. 

(b)  If the orbit has order 3, find 

aEKnd , ,Kd&'  nd,,Kd,;' 

and induce up to the group M generated by K,(a) and a.  We write M = (K,(a) ,  a )  
(c) If the orbit has order 2, find 

b E Kd,;' n d,,K n d,,Kd,' 

and induce up to M = (K,(a) ,  b ) .  
( d )  If the orbit has order 1, we find a, b as defined above and induce up to 

M = ( K 2 ( 4 ,  a, b ) .  
In cases (b),  (c) and ( d )  the representation of the group M is given by equation (5.14) 

of I. Hence the characters at the appropriate elements of the group M are given by 

e*(O = ~(i)~(d,'Id,,)~(d,'Ida2) 
e y b i )  = X[(br)31 

e'(b2i) = x[(b2i)33 

8'(al) = i - ~ ( a l ) ~ [ d ~ ; ' ( a l ) ~ d , , ]  

@*(ab/) = & ~[d,;'(abl)d,~]x[(abl)~] 

8'(ab2i) = +~[d,;'(ab~I)d,,]~[(ab~1)~], 

where 8' are the characters of the totally symmetrized and antisymmetrized cubes on 
M ,  x is the character of the small representation Di, and 1 E K,(a). Hence rL3] and rrl3] 

contain representations with characters 8' t G, respectively. 
In case (vii) (b), (c), ( d )  the remaining contribution to r[',ll is obtained as follows : with 

the element a E M associate the transposition na = ( 1  2) E S, , and with b E M associate 
the cycle nb = (1 0 2) E S, (see theorem (3.6) of I). Any element of K ,  is associated with 
the identity operation and so the coset abK, corresponds to the permutation 

nab = (1 2)(1 0 2) = (1 0) etc 

where the multiplication is from right to left in accordance with the action ofthe elements 
of M o n  the triplets. To obtain the character 8['](m) of m E M ,  multiply P ( m )  byf,[v](nm) 
where f, = dim[v]. The character table of S, may be found in Hamermesh (1964, 
chap 7). So if [VI = [13], then f, = 1 and [v](nm) = (- l)"m as obtained above. If 
[VI = [2,1], then f, = 2 and so 

e r 2 q z )  = 4e+(i) 

e[2qbr)  = -2e+(bi) 

e[2,1l(b2i) = - 2 e + ( m ) .  
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The value of the character is zero on the remaining elements of M. The representation 
r[2*11 contains a representation with character 0[2*11 7 G. 

This method may also be used to work out the Kronecker cube of a space group 
representation. Take one representative (M) from each orbit and work out 

[(OX 0 Dtl 0 ok) 1 K21 t G. 

Then the cube contains this representation t times, where t is the order of the orbit. 
This provides a partial check of the results computed for symmetrized cubes of a given 
representation since the sum of the contributions to the symmetrized representations 
from a given orbit is the same as the contribution to  the cube. 

As noted in 8 2, if we wish to  express the symmetrized power as a sum of irreducible 
representations of G, we induce the representation of M through the little group Gq 
and reduce at this stage. To obtain the space group representations in standard form, 
it may be necessary to conjugate the elements of G4 to obtain a character of 

CRq = { R ~ v } G ~ { R ~ u } - ' ,  

where Rq is equivalent to a vector in the representation domain. It follows from the 
theory of induced representations that this leads to an equivalent representation of G. 

4. Example 

Take G to be the space group Tj corresponding to  the zinc-blende structure. This is 
the same example as that used by Bradley and Davies (1970) to discuss the case n = 2. 
The notation for the elements of the cubic group is given by Altmann and Cracknell 
(1 965). 

The direct lattice for zinc-blende is face-centred cubic with basic translation vectors 

where a is the length of a cube edge. The corresponding reciprocal lattice vectors are 

271 271 271 
a a a g, = -4- 1,1,1), g, = -(I, -1,1), g3 = -(l, 1, -1). 

Let k be any vector in reciprocal space, then we write 

We shall consider the point of symmetry L(4, i, 4) which has little cogroup 

c3v = { E ?  c:, 7 c;1 9 g d b ,  g d e ,  gdf} .  

Note that we are using the active convention whereby the group elements move the 
field and leave the axes fixed. A picture of the Brillouin zone for T with all the special 
points and lines marked is figure (3.14) of Bradley and Cracknell(l972). It is also possible 
to adapt their table (1.5) to  obtain a group multiplication table for the point group 
Td by the substitution CZp + IC,, = g d p  (p = a, b, . . . , f )  and C , , ,  + IC& = S&, 
(m = x, y, z), where I is the inversion operator. 
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The character table of the point group C3" is : 

E c:l { 'ddb?ode>odf)  

L' 1 1 1 

L2  1 1 - 1  

L3 2 -1 0 
A standard set of double coset representatives is the following : 

d,, d, ,  d,, 4 K h l )  &(a) 

0) E E E k, C3" c3 " 
E E C2.x C 2 x k ~  { E , a d f )  { E ,  o d f )  1 E c 2 x  c2x  kL { E I o d f )  { E j o d J )  

(ii) E CZX E C2,kL { E , o d f )  { E 7 a d f )  

(iii) E C2x Six  S&.kL {E,ods)  { E )  

The vector q may be found by using the picture of the BZ directly. Alternatively, 
the action of Ri on k = (i, p, v) is given in table (3.4) of Bradley and Cracknell (1972). 
It is a peculiarity of this example that all the orbits are associated with the vector k,. 

In case (i) we apply the results of 0 3(v). If D' = L', then rL3] contains L' T C and 
there is no contribution to r[2,11 and r[l3]. In fact it is true that if Dk is one dimensional 
there is only a contribution to Hence, if Dk = L2,  then F3] contains L2  t C, only. 
If Dk = L3, then r13] contains (L' t C) + (L2 t C) + (L3  7 G), rL2,11 contains 2(L3 r G) 
and there is no contribution to P"]. 

In case (ii) we have an orbit of order 3 resulting from the action of S3 on (CZX, E ,  E) .  
Note that (0 2)(C2,, E,  E )  = (E ,  E,  CZx), and multiplying through by CZx, to obtain E 
in the zeroth place, gives the triplet (C2x, CZx, E )  which is already in standard form. 
We choose this as the representative triplet of the orbit since the associated vector 
q = C2&,+C2xkL+k, = (0,$,0)+(0,$,0)+($,$,$) = k,, and k ,  is in the repre- 
sentation domain. We apply the results of §3(vi). If Dk = L',  then r[31 contains 
(L' r C ) + ( L 3  r C) and r[2,11 contains 2(L' r C). If Dk = L2,  then F3] contains 
(L2  t C)+(L3 t G) and r[2,11 contains 2(L2 t C). In both cases there is no contribution 
to r['']. If D' = L3, then rr3] contains 3(reg L )  t G where reg L = L' + L2 + 2L3 is the 
regular representation of C3". rr2,'] contains 8(reg L)  G and P3] contains (reg L)  t G. 

Case (iii) provides an example ofa vector q which is not in the representation domain. 
We apply the results of 8 3(vii, d )  and it can be checked that we may take a = ode and 
b = C,. The characters of the symmetrized representations of M are as follows: 

E c:4 { O d d ,  O d e ,  oda) 

1 

0 
I 

I 1  1 -1 

-1 

L 2 +  r 4 -2 0 
I 

I 1  1 1 
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E c?4 { ' d d 9 0 d e ,  oda) 

0 

L 3 +  32 -4 0 1: 1 0 

The rows correspond to the representations [3], [2,1] and [13] respectively. But 
GL = SlxMS&, so we obtain character tables for GL by conjugating the elements of 
M by S l X  in the above tables. If Dk = L', then rL3] contains (L' f c), r[2,11 contains 
2(L3 t c) and r[13] contains (L2 f c). If Dk = Lz ,  then ri31 contains (Lz t c), r[z,'l 
contains 2(L3 f c) and P3] contains (L' f G). If Dk = L3,  then rr3] contains 2(L1 t c) 
+ 2(L2 t c) + 2(L3 f 0, r[2*11 contains 4(reg L)  f G+ 4(L3 f c) and r[131 contains 
2(L' r c)+ 2(LZ f c). 

Collecting together the results, we obtain : 

(L')[31 = 3(L' t c)+(L3 T c) 

(L')[ZJ] = 2(L' t G)+4(L3 f c) 

(L1)['31 = L2 7 G 

(L2) [31  = 3(L2 f c) + (L3 f c) 

(LZ)[Z*'] = 2(LZ f c)+4(L3 f c) 

(L2)[131 = L' t G 

(L3)'31 = 6(L' t c)+6(Lz f G)+9(L3 f G) 

(L3)[2,11 = 12(L1 f c) + 12(L2 f c) +30(L3 f c) 

(L3)["' = 3(L' f c)+3(L2 f c)+4(L3 1 c). 

The motivation to obtain these results was the possible application, in the case n = 3, 
to the Landau theory of second order phase transitions in crystals. A full account of 
this theory may be found in Lyubarskii (1960, chapter 7) and Landau and Lifshitz 
(1958, chapter 14). One of the conditions that they require to be satisfied is that the 
totally symmetrized cube does not contain the identity representation, which we denote 
by A. Clearly a necessary condition for the subspace defined by equation (1.13) of I, 
to carry A(@ is that the associated vector q = 0. Hence in the above example it would 
only have been necessary to work out the associated vectors q to ascertain the result. 
More generally, a,,, carries A(G) if and only if the representation (Dg2 0 DaI 0 D) 1 K ,  
contains A(K,), and so it is sufficient to work out the contribution from such spaces. 
Clearly this result generalizes to higher n. 

5. Comparison with other methods 

The methods for obtaining selection rules in crystals fall mainly into two types. There 
is the subgroup technique used by Bradley and Davies (1970), and extended in I, which 
is based on the theory of induced representations, and there is the full group method 
of Birman (1962,1963). Davies and Lewis (1971) have calculated the Kronecker product 
and symmetrized square of representations of the space group Fd3m, corresponding to 
the diamond structure, using two full group methods advocated by Birman, namely, 
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the 'direct inspection' method and the 'reduction group' method, and also by the sub- 
group method of Bradley (1966) and Bradley and Davies (1970). Their conclusions 
appear to favour the subgroup method as a general technique although in some cases 
'direct inspection' is better. 

Lewis (1973) has also developed a method for finding the totally symmetrized nth 
powers of space group representations. His is basically an inductive full group method 
because it relies on a formula of Littlewood (1959) to express the character of the nth 
symmetrized power, x'"], in terms of x["], in c n, and x(g"). He uses subgroup techniques 
to analyse the components of the generalized character g + x(g"), and for this he has 
to work out a complete set of double coset representatives, as in I, to obtain his wave- 
vector selection rules. The basic difference between our methods is that Lewis's is 
necessarily inductive at  the full group level whereas ours involves symmetrizations at 
the subgroup level, where they are more easy to handle. 

It seems to us that for space groups, in the case n > 3, the subgroup method is 
appreciably easier to use than full group methods, and indeed the only practical method 
available if one requires a complete decomposition into symmetry classes. For n = 3, 
since both full group and subgroup methods are available, it is a matter of taste which 
method is used. Certainly it seems essential that both methods should be well known, 
as undoubtedly attempts will be made in the future to program such decompositions 
for all 230 space groups, and whoever attempts this daunting task will have to compare 
critically the various methods available in respect of computer storage space and the 
number of operations involved. 

Acknowledgments 

The author would like to thank both Dr C J Bradley and Dr N B Backhouse for reading 
the manuscript, and also New Hall, Cambridge for a Research Fellowship. 

References 

Altmann S L and Cracknell A P 1965 Rev. mod. Phys. 37 19-32 
Backhouse N B and Bradley C J 1970 Q. J. Math. 21 203-22 
Birman J L 1962 Phys. Rev. 127 1093 
- 1963 Phys. Rev. 131 1489 
Bradley C J 1966 J. math. Phys. I 1145-52 
Bradley C J and Cracknell A P 1972 The Mathematical Theory of Symmetry in Solids (Oxford: Oxford 

Bradley C J and Davies B L 1970 J. math. Phys. 11 1536-52 
Davies B L and Lewis D H 1971 Phys. Stat. Solidi A 7 523 
Gard P 1913 J. Phys. A :  Math., Nucl. Gen. 6 1807-28 
Hamermesh M 1964 Group Theory (Reading, Mass. : Addison-Wesley) 
Hurley A C 1966 Phil. Trans. R .  Soc. A MO 1-36 
Koster G F 1957 Solid State Physics vol5, ed F Seitz and D Turnbull (New York: Academic Press) pp 173-256 
Landau L D and Lifshitz E M 1958 Statistical Physics (Oxford: Pergamon Press) 
Lewis D H 1973 J. Phys. A: Math., Nucl. Gen. 6 12549 
Littlewood D E 1959 A University Algebra (London: Heinemann) 
Lyubarskii G Ya 1960 The Application of Group Theory in Physics (Oxford: Pergamon Press) 

University Press) 


